iStock_000050949690_Small Blogs
Read article Preclinical Flow Cytometry – More than Immunophenotyping

Flow cytometry is a powerful tool for surveying the cellular landscape during preclinical development of drugs and biologics. But flow cytometry can go beyond immunophenotyping to actual functional measurements that can contribute to understanding the true potential of a therapeutic candidate. To make the most of your flow cytometry studies, consider these other assays as you plan the next phase of preclinical development.

indirect_staining_featured Blogs
Read article Optimizing Indirect Staining for Flow Cytometry Applications

Flow Cytometry utilizes fluorescently labeled antibodies to detect specific biomarkers on the surface and within cells, and over the past few years, there has been a surge in reagents available for flow cytometry applications. Most of these have been developed using monoclonal antibodies raised in mice and conjugated to a range of fluorophores. However, there are still instances where suitable monoclonal antibody reagents/conjugates are not commercially available, and small-scale conjugations are not practical. In these instances, so-called indirect staining may be employed, where the binding of an unconjugated primary antibody is detected using a secondary anti-IgG antibody conjugate.

iStock_000057927156_Medium Blogs
Read article Measuring Memory – Evaluating Memory T Cells In A Clinical Setting

Memory is a characteristic of the immune system that provides humans and other vertebrates with long term protection against infectious diseases and other “non-self” antigens such as those associated with tumor cells. In the context of T cells, memory responses occur when a naïve T cell encounters an antigen bound to a major histocompatibility complex molecule and is activated to undergo differentiation into an effector cell or a memory cell. Memory T cell populations can persist in the body for months to years and can be stimulated to respond specifically and rapidly to a foreign antigen upon re-exposure.

iStock-542712102 Blogs
Read article Mechanical versus Enzymatic Dissociation of Tissue for Flow Cytometry

Flow cytometry is a powerful tool because it allows users to analyze the characteristics of millions of cells with relative speed and precision. A single cell suspension of fluorescently labeled sample travels through the cytometer for excitation by lasers, and the emitted light photons are measured by different detectors. Having a single cell suspension is essential to measuring cell fluorescence accurately, and many types of cell or tissue samples must be specially processed to make this suspension. Two different methods can be used for single cell suspensions: mechanical dissociation of tissue or enzymatic dissociation of tissue. This processing step is typically carried out before cells are stained and both methods have benefits and caveats.

iStock-881072690_RT-FLT Blogs
Read article Making Sure your Samples Arrive Alive – Clinical Logistics and Flow Cytometry

Flow cytometry is a powerful technique for characterizing immune responses to vaccines, immunotherapeutic drugs, and other clinical interventions. But many preclinical and clinical studies may take place at sites that are not in the same location as the flow cytometry lab. That’s why it’s critical to determine how clinical specimens should be collected, processed, stored, and shipped to assure that cells will be viable and abundant enough for flow cytometry analysis.

Scientist,Holding,Coronavirus,Covid-19,Infected,Blood,Sample,Tube.,Dna,Testing Blogs
Read article Good Clinical Flow Cytometry Starts with Sample Collection

With the rapid progress of immune-monitoring drug development, flow cytometry has found itself increasingly at the forefront of clinical trial assessment of safety and efficacy. This is not without challenges since flow cytometry analysis can be complicated and expensive, too often employs idiosyncratic experimental and analytical methods. So how can a platform without standardized methods and processes, be successfully applied to evaluate clinical endpoints?

PATTERN_AMBER_1320x780_2 Blogs
Read article Immunophenotyping Across Species – Looking Beyond Mice and Humans

The flow cytometry market is filled with an abundance of products for mouse and human samples. But what if your studies use different species? Fortunately, many antibodies for standard cell markers can work on multiple species, and more species-specific reagents are becoming available.

PATTERN_ORANGE_1320x780 Blogs
Read article Getting a Go-To Gating Strategy

Data by FlowMetric All flow cytometry experiments begin with similar basic set up protocols to assure that the equipment is functioning properly and that samples can be measured accurately. Using a flow cytometry gating strategy is an essential step during this set up phase as it assures that the correct cell populations are being measured. Here are factors to consider as you determine how you want to establish your flow cytometry gating strategy for your next experiment.

iStock_000045133878_Small Blogs
Read article Flow Cytometry Beyond Basic Research: Best Practices In GLP For Flow Cytometry Assays

Flow cytometry assays are important for preclinical and clinical research, however, it is vital to understand the level of compliance required for the stage of research you are completing.  Flow Cytometry assays completed for toxicology and safety assessments are required to be in compliance of Good Laboratory Practices (GLP), on the other hand, basic research or discovery/exploratory studies can be non-GLP.  GLP refers to a set of standards for laboratory studies to be planned, performed, monitored, reported, and archived. Preclinical and clinical studies must be GLP-compliant in order to be submitted for review by regulatory agencies like the FDA. Consider these three points if you find yourself in need of a GLP-compliant flow cytometry assay. 

flow-cytometry-applications Blogs
Read article Flow Cytometry Applications In Vaccine Development

There is no question that the discovery of vaccines spearheaded the path of modern medicine and in so doing, eradicated at least two diseases, smallpox, and rinderpest from the global population. Today’s modern vaccines are being developed not only to tackle infectious diseases but also for the treatment and prevention of autoimmune diseases and cancers. Whereas vaccines for infectious diseases and cancer are designed to provoke a specific Th 1-driven immune response to target and reject the tumor or pathogen, vaccines driving Th 2 responses appear to be the best at targeting autoimmune diseases. Understanding the driving factors behind these underlying responses is central to the development of safe and effective vaccines, and flow cytometry provides unprecedented clarity on how the immune system responds to different vaccine strategies. 

iStock-953850456_RT Blogs
Read article Flow Cytometry – Driving CAR T Cell Therapy from Bench to Bedside

Chimeric antigen receptor (CAR) T cell therapy is transforming patient-specific cancer treatment, even for the most challenging forms of cancer. CAR T cells are made by isolating a patient’s T cells from the blood and engineering them in the lab so that they can specifically fight the patient’s cancer. This custom-made biologic is both time and labor-intensive and extremely costly, but it is also an extremely effective form of treatment.