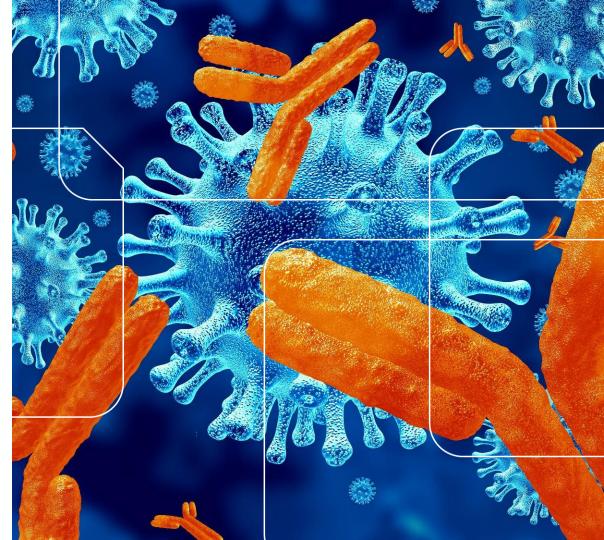
Bioanalytical Strategies for Therapeutic Drugs and Their Conjugates (ADCs, Oligos, siRNA, ASOs and AOCs/ARCs) by QqQ/HRMS


> Strategies and Case Studies

Dawn Dufield, PhD
Scientific Officer, Mass Spectrometry
AAPS Pharm Sci 360
Fall 2025

CRO
Capabilities
Overview

Experience You can Trust

KCAS Bio is an established bioanalytical **CRO with over 45 years of experience** in biomarker and bioanalytical solutions.

Global Footprint

~400 experts dedicated to your bioanalytical & biomarker success operating in purpose-built facilities. We partner with our clients to help them with their drug development process around the globe. We like solving problems **together**.

Method Development to Routine Testing

Discovery to Product Registration

Support all along the way

Matrices

Biofluids, Tissues, Cells

All Modalities

Large Molecules, Biologics, Small Molecules, Cell & Gene therapy, Vaccines

Non-Regulated / Regulated

GLP & GCLP Compliant

Core Scientific Expertise

KCAS Bio has decades of experience working with all key therapeutic areas and technologies

Services: Full CRO Solution Suite

KCAS Bio brings full suite CRO solutions combining scientific expertise, technical innovation, and the highest standards of regulatory rigor.

/	PK/TK
•	Biopharmaceutical

✓ Immunogenicity

✓ PK / TK Pharmaceutical

✓ Biodistribution

✓ Biomarkers – Soluble

✓ Dose Formulation Analysis

✓ Biomarkers – Cellular

Sample Kitting & Central
Lab

/

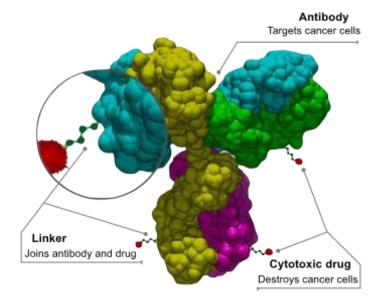
Flow Cytometry Services

Molecular Services

Technology: KCAS Bio Leading the Way

Cutting-edge platforms and instrumentation that accelerate the discovery and development of life-changing drugs.

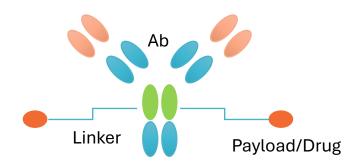
LBA		LC/MS	Flow Cytometry	Molecular
ELISAMSDLuminexELLAELISPOT	LumipulseSimoa HD-XSMCxProNULISA	LC/MS/MSHPLCHybrid MS/LBALC/UV FluorescenceHRMS	Spectral FlowConventional FlowCell SortingValidated PanelsBackbone Panels	 qPCR ddPCR DNA & RNA Assays Automated Extraction Automated Sample Prep
			From:	



Antibody Drug Conjugates

Background and Case Studies

Antibody Drug Conjugate

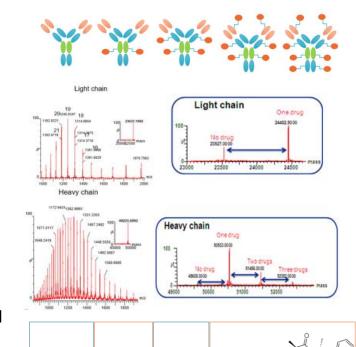


Purpose: Develop various conjugated modalities to help aid in drug delivery, development, efficacy etc.

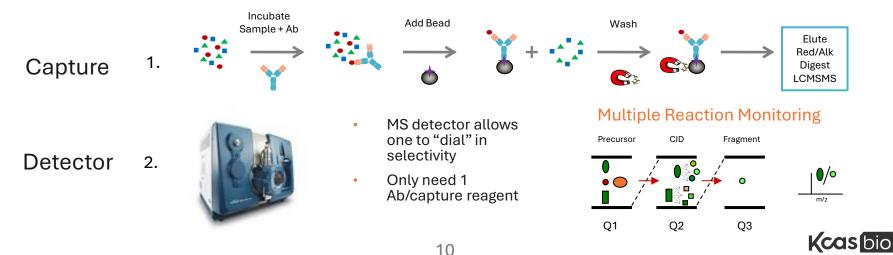
- · Adding large molecules to increase half-life
- Adding toxins to targeted delivery (ADC) to minimize systemic exposure to toxic materials (Chemo)
- Adding caps/Abs to help protect stability etc (ARCs)

3 Main Parts of ADC

- Ab directed against specific tumor antigen
- Drug
 - Payload or Cytotoxin
 - SiRNA
 - Other
- Linker Cleavable or Uncleavable


Types of ADCs

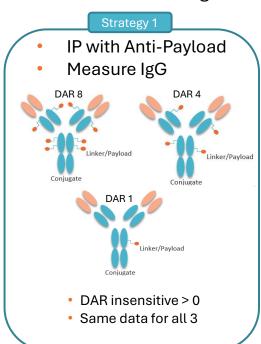
- Toxin
- siRNA/Oligo/ASO
- Peptide
- Radio isotope
- Degraders

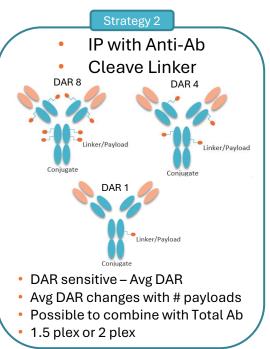

exicon and Definitions

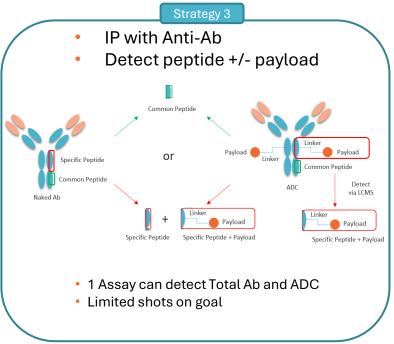
- Total Ab (TAb) Antibody with or without any payloads LCMS or LBA
- Naked Ab Ab with DAR = 0 (no Payload)
- ADC Antibody Drug Conjugate Ab with DAR >0
 - Conjugated payload DAR sensitive (released payload) LCMS
 - Conjugated antibody DAR insensitive (IP Payload, detect Ab) LCMS or LBA
- Payload microtublin inhibitors (MMAE, mertansine-DM1), DNA Binders (calicheamicin, SN-38, Exatecan, camptothecin)
 - Free Pavload LCMS
 - Total Payload
- DAR Drug to Antibody Ratio how many drugs are on the Ab (indicates level of drug loaded)
 - HRMS characterization
- Linker attaches payload to Ab (should be stable in circulation and only release payload at target)
 - Cleavable Cathepsin, papain Release Free Payload
 - Non-cleavable less BioA options, more stability?
 - Release active payload-linker-amino acid moieties
 - May need Biotransformation to ID metabolites

Principles of Hybrid LC-MS

- Definition: Hybrid LCMS is a technique which combines an enrichment step (typically an antibody enrichment on beads or columns) with the selectivity and sensitivity provided by LC-MS/MS
- Various surrogate peptides can be chosen for detection depending on needs




ADC – Strategies

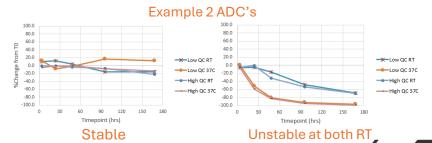

Hybrid LCMS

Total or Naked Ab ADC Free Payload "Released" Payload for cleavable linkers

 Strategy is determined by conjugation and linker chemistry as well as what information is needed and available reagents

Case Study - "Generic" Assay for ADC

Non-clinical Assay – LCMS for ADC


- Goal: To develop a PK assay for a Human ADC in preclinical species for *in-vitro* and *in-vivo* studies Various DAR's with same payload (MMAE)
- Approach Anti-MMAE IP followed by digestion and LCMSMS
 - +/- Reduction/Alkylation
 - Common Fc peptides
 - Several to choose from (Trp sites)
 - Must have Antibody to payload (MMAE or other payload with Ab available)
 - DAR insensitive Will capture any DAR > 0
 - 20 different ADC's different DARs/conjugations but all had MMAE payload

ASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVP
SSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTC
VVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALP
APIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSD
GSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK

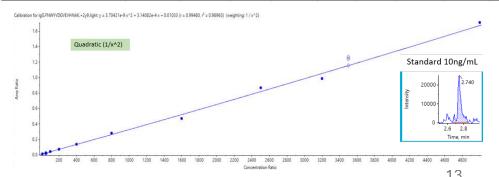
- Can "IP" or capture with reagent specific to Payload Detect specific sequence by LCMS (generic or specific peptides)
 - FNW, GPS, VVSV, etc
 - IP Anti-Payload

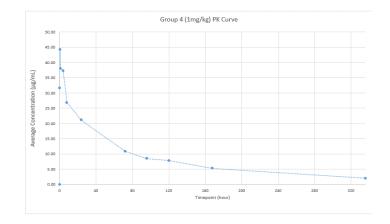
 R/A/Digest

- Step 1 In-vitro stability to identify most stable ADCs
- Step 2 In-vivo PK for top 3 ADCs

12

Confidential - Company Proprietary

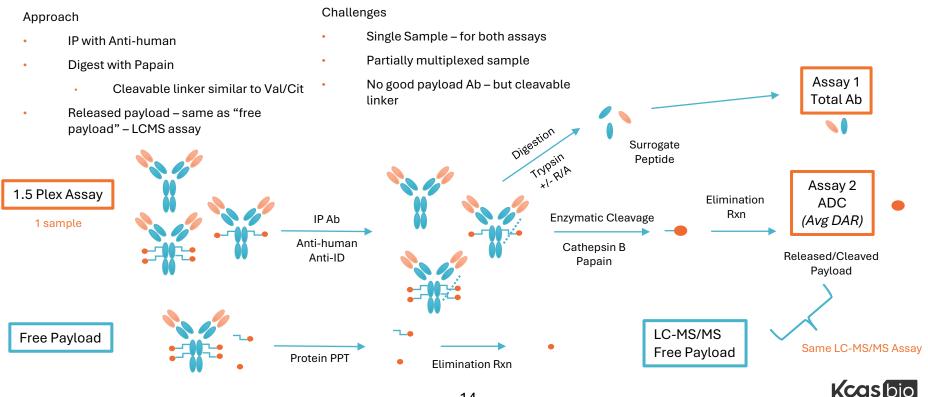

d 37C **Kcas** bio


Case Study – Generic IgG - ADC

Example - STD and QC and PK Curve

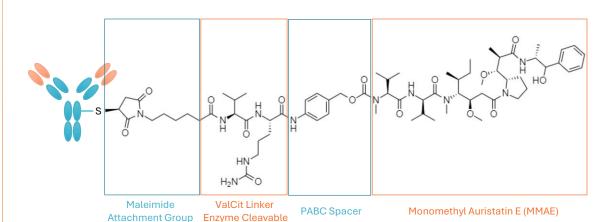
Component Name	Actual Concentration (ng/mL)	Num. Values	Mean (ng/mL)	Average Accuracry	Value #1 (ng/mL)
IgG.FNWYVDGVEVHNAK.+2y9.light	10	1 of 1	10.3	102.8	10.3
IgG.FNWYVDGVEVHNAK.+2y9.light	50	1 of 1	39.2	78.4	39.2
IgG.FNWYVDGVEVHNAK.+2y9.light	100	1 of 1	112	112.5	112
IgG.FNWYVDGVEVHNAK.+2y9.light	200	1 of 1	207	103.4	207
IgG.FNWYVDGVEVHNAK.+2y9.light	400	1 of 1	411	102.9	411
IgG.FNWYVDGVEVHNAK.+2y9.light	800	1 of 1	858	107.2	858
IgG.FNWYVDGVEVHNAK.+2y9.light	1600	1 of 1	1452	90.7	1452
IgG.FNWYVDGVEVHNAK.+2y9.light	2500	1 of 1	2648	105.9	2648
IgG.FNWYVDGVEVHNAK.+2y9.light	3200	1 of 1	3006	93.9	3006
lgG.FNWYVDGVEVHNAK.+2y9.light	5000	1 of 1	5113	102.3	5113

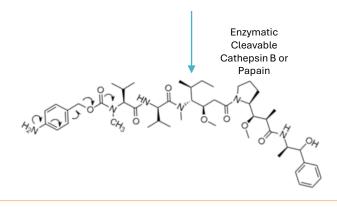
Component Name	Actual Concentration (ng/mL)	Num. Values	Mean (ng/mL)	Standard Deviation	Percent CV	Average Accuracy Across Replicates	Value #1 (ng/mL)	Value #2 (ng/mL)	Value #3 (ng/mL)
IgG.FNWYVDGVEVHNAK.+2y9.light	0	0 of 3	N/A	N/A	N/A	N/A	0	0	0
IgG.FNWYVDGVEVHNAK.+2y9.light	50	3 of 3	43.7	7.8	17.88	87.5	34.7	47.9	48.6
IgG.FNWYVDGVEVHNAK.+2y9.light	3500	3 of 3	3694.3	166.3	4.50	105.6	3507	3752	3824


- 2 Day MD verify peptides and P&A
- Typical range 25-5000 ng/mL
- Surrogate Matrix STD's (0.1% BSA) and Matrix QC's
- Several Fc peptides (FNW, VVSV, GPS, etc)

Case Study ADC and Total Ab – 1.5 Plex + Free Payload

Surrogate Peptide + Cleavable Payload – Split Sample – 3 Analytes by LC-MS/MS


Goal: To develop a bioanalytical assay for an ADC and Total Ab in Cyno Plasma from single sample


347 1.5x 23-08-29 Free 23-12-11

Case Study – ADC

Released Payload – Cleavable Linker Chemistry

- Example Chemistry for Cleavable linker
- Val Cit Linker
- 1, 6 Elimination to release "free" MMAE as measure of ADC (released)

Spontaneous β-elimination MMAE

MMAE

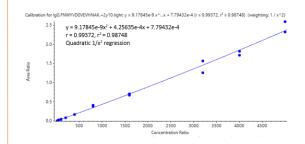
Kcas bio

Confidential - Company Proprietary

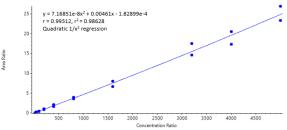
Case Study ADC and Total Ab – 1.5 Plex

Surrogate Peptide + Cleavable Payload – Split Sample

Total Ab Assay – Surrogate Peptide


	2	Replicate #2 (ng/mL)	Replicate #1 (ng/mL)	Average Accuracy (%)	Percent CV	Standard Deviation	Mean	Num. Values	Theoretical Concentration (ng/mL)	Component Name
		29.0	22.5	102.9	17.9	4.60	25.7	2 of 2	25	IgG.FNWYVDGVEVHNAK.+2y10.light
25 ng/mL Std		53.5	40.6	94.1	19.4	9.10	47.1	2 of 2	50	IgG.FNWYVDGVEVHNAK.+2y10.light
	_	111.6	92.4	102.0	13.3	13.60	102.0	2 of 2	100	IgG.FNWYVDGVEVHNAK.+2y10.light
6000		187.7	191.2	94.7	1.3	2.50	189.5	2 of 2	200	IgG.FNWYVDGVEVHNAK.+2y10.light
> A	E	395.9	385.7	97.7	1.8	7.2	390.8	2 of 2	400	IgG.FNWYVDGVEVHNAK.+2y10.light
4000	ig.	871.1	945.4	113.5	5.8	52.50	908.2	2 of 2	800	IgG.FNWYVDGVEVHNAK.+2y10.light
2000	_	1607.1	1530.1	98.0	3.5	54.4	1568.6	2 of 2	1600	IgG.FNWYVDGVEVHNAK.+2y10.light
0		3421.0	2791.2	97.1	14.3	445.3	3106.1	2 of 2	3200	IgG.FNWYVDGVEVHNAK.+2y10.light
2.3 2.4 2.5 2.6 2.7		3944.4	3737.1	96.0	3.8	146.6	3840.8	2 of 2	4000	lgG.FNWYVDGVEVHNAK.+2y10.light
Time, min		5449.2	4928.7	103.8	7.1	368.1	5189.0	2 of 2	5000	IgG.FNWYVDGVEVHNAK.+2v10.light

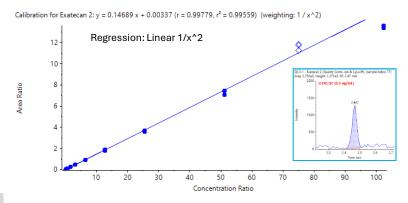
QC Level	Component Name	Dilution	Theoretical Concentration (ng/mL)	Num. Values	Mean (ng/mL)	Standard Deviation	Percent CV	Average Accuracy (%)	Replicate #1 (ng/mL)	Replicate #2 (ng/mL)	Replicate #3 (ng/mL)
LLOQ	IgG.FNWYVDGVEVHNAK.+2y10.light	1	25	3 of 3	26.2	3.50	13.3	104.8	29.50	22.60	26.50
Low	IgG.FNWYVDGVEVHNAK.+2y10.light	1	75	2 of 3	72.1	0.10	0.2	96.2	99.4	72.0	72.2
Medium	IgG.FNWYVDGVEVHNAK.+2y10.light	1	350	3 of 3	370	43.90	11.9	105.7	337.7	352.3	420.1
High	IgG.FNWYVDGVEVHNAK.+2y10.light	1	3750	3 of 3	3762.4	185.1	4.9	100.3	3549.2	3882.6	3855.4
100X Dilution QC	IgG.FNWYVDGVEVHNAK.+2y10.light	100	1,000	3 of 3	913.5	61.7	6.8	91.4	861.1	981.4	897.9


ADC Assay – Released Payload

		Replicate #2 (ng/mL)	Replicate #1 (ng/mL)	Average Accuracy (%)	Percent CV	Standard Deviation	Mean	Num. Values	Theoretical Concentration (ng/mL)	Component Name
		27.9	22.5	100.8	15.0	3.80	25.2	2 of 2	25	Payload
25 ng/mL Std		55.8	42.5	98.3	19.2	9.40	49.2	2 of 2	50	Payload
		109.5	89.1	99.3	14.5	14.40	99.3	2 of 2	100	Payload
5000 - 3.219		224.0	182.0	101.5	14.6	29.70	203.0	2 of 2	200	Payload
4000	.≧	448.9	357.2	100.8	16.1	64.8	403.1	2 of 2	400	Payload
3000	80	846.6	762.9	100.6	7.4	59.20	804.8	2 of 2	800	Payload
1000	_=	1705.0	1415.2	97.5	13.1	204.9	1560.1	2 of 2	1600	Payload
0		3593.8	3017.6	103.3	12.3	407.4	3305.7	2 of 2	3200	Payload
3.1 3.2 3.3 3.		4185.6	3562.5	96.9	11.4	440.6	3874.0	2 of 2	4000	Payload
Time, min		5383.8	4706.4	100.9	9.5	479.0	5045.1	2 of 2	5000	Payload

QC Level	Component Name	Dilution	Theoretical Concentration (ng/mL)	Num. Values	Mean (ng/mL)	Standard Deviation		Average Accuracy (%)	Replicate #1 (ng/mL)	Replicate #2 (ng/mL)	Replicate #3 (ng/mL)
LLOQ	Payload	1	25	3 of 3	25.9	1.90	7.4	103.5	28.00	24.30	25.30
Low	Payload	1	75	2 of 3	74.6	0.70	1.0	99.4	75.1	74.0	58.2
Medium	Payload	1	350	3 of 3	364.3	15.80	4.3	104.1	350.7	360.7	381.6
High	Payload	1	3750	3 of 3	1070.6	58.4	5.5	107.1	1009.8	1126.3	1075.6
100X Dilution QC	Payload	100	1,000	3 of 3	3903.8	288.7	7.4	104.1	3591.5	4160.8	3959.0

- Prevalidation Data Both Assays
- Accuracy and Precision < 20%
 - ADC signal is after IP enrichment and then cleavage of payload (Avg DAR)
 - Surrogate peptide chosen FNW FC peptide since Cyno Matrix


Case Study – Free Payload

Free Payload Assay (Exatecan)

			Humai	n Plasma Sta	ndards			
Standard	Component Name	Actual Concentration (ng/mL)	Num. Values	Replicate 1	Replicate 2	Mean Concentration (ng/mL)	% CV	% Accuracy
1	Exatecan	0.1	2 of 2	0.09	0.09	0.09	0.7	94.3
2	Exatecan	0.2	2 of 2	0.21	0.22	0.21	4.0	106.5
3	Exatecan	0.4	2 of 2	0.42	0.44	0.43	3.0	106.9
4	Exatecan	0.8	2 of 2	0.81	0.83	0.82	1.4	102.3
5	Exatecan	1.6	2 of 2	1.69	1.71	1.70	0.9	106.4
6	Exatecan	3.2	2 of 2	3.25	3.38	3.32	2.8	103.7
7	Exatecan	6.4	2 of 2	6.34	6.39	6.36	0.6	99.4
8	Exatecan	12.8	2 of 2	12.15	12.85	12.50	3.9	97.7
9	Exatecan	25.6	2 of 2	24.40	25.11	24.75	2.0	96.7
10	Exatecan	51.2	2 of 2	50.85	47.98	49.41	4.1	96.5
11	Exatecan	102.4	2 of 2	92.59	91.15	91.87	1.1	89.7

QC	Component	Actual	Num Values	Poplicate 1	Poplicato 2	Poplicato 2	Mean Concentration	% cv	% Accuracy
ЦC	Name	(ng/mL)	Nulli. Values	Replicate 1	Replicate 2	neplicate 3	(ng/mL)	70 CV	76 Accuracy
1	Exatecan	0.1	3 of 3	0.079	0.085	0.089	0.08	6.0	84.5
2	Exatecan	0.3	3 of 3	0.254	0.274	0.266	0.26	3.9	88.2
3	Exatecan	3	3 of 3	2.65	2.90	2.87	2.80	4.9	93.4
4	Exatecan	75	3 of 3	71.64	68.75	72.17	70.85	2.6	94.5

Lot	Component Name	Actual Concentration (ng/mL)	Num. Values	% Accuracy	Value #1	Lot	Component Name	Actual Concentration (ng/mL)	Num. Values	% Accuracy	Value #1
Lot 1	Exatecan 2	0.3	1 of 1	100.03	0.30	Lot 1	Exatecan 2	75	1 of 1	110.1	82.58
Lot 2	Exatecan 2	0.3	1 of 1	99.36	0.30	Lot 2	Exatecan 2	75	1 of 1	102.1	76.57
Lot 3	Exatecan 2	0.3	1 of 1	107.93	0.32	Lot 3	Exatecan 2	75	1 of 1	111.54	83.65
Lot 4	Exatecan 2	0.3	1 of 1	102.59	0.31	Lot 4	Exatecan 2	75	1 of 1	109.68	82.26
Lot 5	Exatecan 2	0.3	1 of 1	100.24	0.30	Lot 5	Exatecan 2	75	1 of 1	109.18	81.88
Lot 6	Exatecan 2	0.3	1 of 1	92.01	0.28	Lot 6	Exatecan 2	75	1 of 1	103.29	77.46

- Pre-validation Data Accuracy and Precision
 - Curves and QCs all pass acceptance (15/20%)
 - Matrix effect passes at low and high QC
- Curve regression linear 1/x²
 - Quadratic potentially better fit on high end
- Back end LC-MS/MS method same as ADC (conjugated drug)

Case Study ADC and Total Ab – 2 Plex

Surrogate Peptide + Acid Cleavable Payload

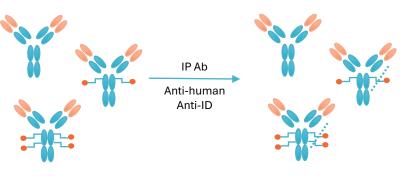
 Goal: To develop a bioanalytical assay for an ADC and Total Ab in Human Plasma from single sample Acid cleavable ADC linkers are designed to release the drug payload under acidic conditions, which are characteristic of tumor cells. These linkers, such as hydrazone bonds, remain stable in the neutral pH of blood but cleave in the acidic environment of lysosomes or endosomes, enabling precise drug release at the target site

Approach

- IP with Anti-ID
- Hydrolyze payload during Ab elution
 - Acid cleavable
- Released payload same as "free payload" LCMS assay

Challenges

- Single Sample for both assays
- Multiplexed sample
- No good payload Ab or stability concerns – but cleavable linker


2 Plex Analysis

Total Ab

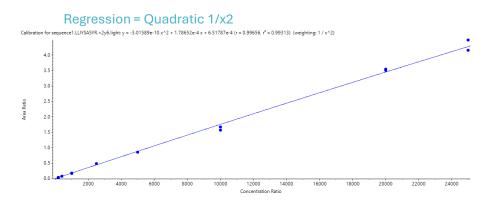
ADC (Avg DAR) Conjugated Payload

LC-MS/MS

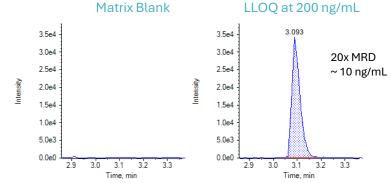
Hydrolysis

Release during acid elution

Digestion

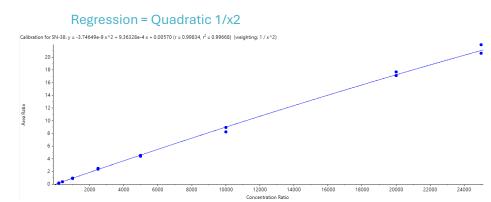

Trypsin
+/- R/A

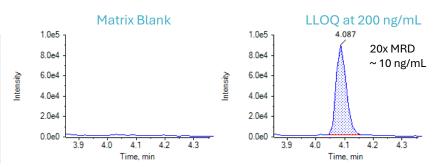
Neutralize


P&A Total Ab (TAb)

200-25,000 ng/mL ADC – Quantitation Surrogate Peptide

			25-08-21	LC62 P&A-	MMM			
		:	Standard C	urve in Poo	led HuPl			
Sample ID	Actual Concentration (ng/mL)	Num. Values	Mean	Standard Deviation	Percent CV	Average Accuracy across Replicates	Value #1	Value #2
Std 1	200	2 of 2	200.224	36.137	18.05	100.11	225.776	174.671
Std 2	400	2 of 2	396.991	7.099	1.79	99.25	391.971	402.011
Std 3	1000	2 of 2	988.608	43.142	4.36	98.86	958.102	1019.115
Std 4	2500	2 of 2	2732.512	14.247	0.52	109.3	2742.586	2722.437
Std 5	5000	2 of 2	4839.442	11.192	0.23	96.79	4847.357	4831.528
Std 6	10000	2 of 2	9229.105	440.597	4.77	92.29	9540.654	8917.556
Std 7	20000	2 of 2	20456.26	119.829	0.59	102.28	20540.99	20371.52
Std 8	25000	2 of 2	25288.78	1434.712	5.67	101.16	26303.27	24274.28


						LC62 P&A-MI									
	Quality Controls in Pooled HuPl														
Sample ID	Actual Concentration (ng/mL)	Num. Values	Mean	Standard Deviation	Percent CV	Average Accuracy across Replicates	Value #1	Value #2	Value #3	Value #4	Value #5	Value #6			
LLOQ QC	200	6 of 6	182.859	10.531	5.76	91.43	199.291	177.792	172.473	184.065	190.344	173.191			
LQC	600	6 of 6	529.641	28.422	5.37	88.27	521.104	502.297	531.915	544.388	501.535	576.609			
MQC	12500	6 of 6	11138.28	747.763	6.71	89.11	11674.15	10592.91	9979.098	11661.87	11021.93	11899.71			
HQC	18750	6 of 6	18598.35	895.063	4.81	99.19	17822.23	18691.37	18001.24	19169.35	17843.77	20062.15			


P&A Conjugated Drug (ADC)

200-25,000 ng/mL ADC – Quantitation Drug

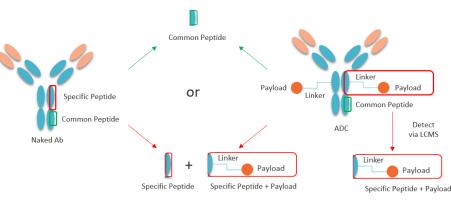
		5		LC62 P&A-I urve in Pool				
Sample ID	Actual Concentration (ng/mL)	Num. Values	Mean	Standard Deviation	Percent CV	Average Accuracy across Replicates	Value #1	Value #2
Std 1	200	2 of 2	197.634	19.908	10.07	98.82	211.711	183.557
Std 2	400	2 of 2	409.093	5.103	1.25	102.27	405.485	412.702
Std 3	1000	2 of 2	993.858	68.161	6.86	99.39	945.661	1042.056
Std 4	2500	2 of 2	2606.779	125.613	4.82	104.27	2695.601	2517.957
Std 5	5000	2 of 2	4869.338	142.314	2.92	97.39	4768.707	4969.97
Std 6	10000	2 of 2	9564.001	572.429	5.99	95.64	9968.769	9159.232
Std 7	20000	2 of 2	20224.18	511.269	2.53	101.12	19862.66	20585.7
Std 8	25000	2 of 2	25298.78	1289.224	5.1	101.2	26210.4	24387.16

				Ou		LC62 P&A-M rols in Poole						
Sample ID	Actual Concentration (ng/mL)	Num. Values	Mean	Standard Deviation		Average Accuracy across Replicates	Value #1	Value #2	Value #3	Value #4	Value #5	Value #6
LLOQ QC	200	6 of 6	180.404	10.538	5.84	90.2	198.775	181.21	167.804	176.581	183.493	174.561
LQC	600	6 of 6	537.377	23.32	4.34	89.56	513.367	519.87	548.649	556.179	517.703	568.497
MQC	12500	6 of 6	11368.81	741.94	6.53	90.95	12359.38	10545.82	10512.43	11426.23	11403.61	11965.41
HQC	18750	6 of 6	18639.77	1082.668	5.81	99.41	17363.69	18931.72	18042.94	19316.77	17882.59	20300.9

Case Study ADC and Total Ab – 2 Plex

Why LCMS over LBA - Generic MAb +...

No reagents, multiplex


- Goal: To develop a bioanalytical assay for site-specific ADC and Total Ab in Cyno Plasma
- Affinity Capture ADC/Total Ab with Receptor that binds both

Challenges

- No Ab to Payload available nor planned
- Pab to CDR started
- Mab > 6 months away
- Receptor available

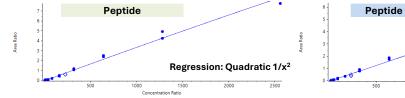
Approach

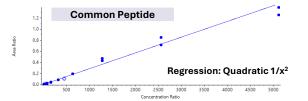
- Hybrid LC-MS/MS chosen as best choice due to limited reagent availability
- Both assays could be done by LCMS

ADC

- Non-cleavable linker
- Site-Specific DAR 2
- Since no Ab MUST find peptide + payload 1 option

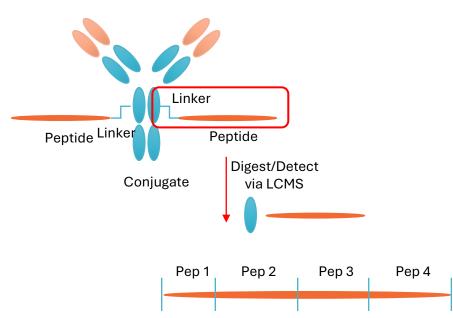
Total Ab


- Any peptide unique to Ab
 - Generic/common peptide to both
 - Specificity from IP or sequence
 - Peptide +/- payload summed


Case Study ADC and Total Ab – 2 Plex

Hybrid LCMS with Receptor IP

		Pe	ptide	Peptid	Peptide w/ Payload		Peptide + Peptide w/				_	
			<u> </u>	·	<u> </u>		Payload			Common Peptide		ide
	Actual	Calculated		Calculated			Total Antibody		Actual	Calculated		
	Concentration	Concentration	%	Concentration	1	%	Calculated		Concentration	Concentration		%
Sample Name	(ng/mL)	(ng/mL)	% CV Accuracy	(ng/mL)	% CV	Accuracy	Concentration (ng/mL)	Sample Name	(ng/mL)	(ng/mL)	% CV	Accuracy
Mixed_Standard_10	10	10.5	7.1 104.9	9.74	9.1	97.4	20.2	Mixed_Standard_10	20	21.4	10.6	107.0
Mixed_Standard_20	20	19.2	11.4 96.2	22.7	6.0	113.5	41.9	Mixed_Standard_20	40	37.6	6.6	93.9
Mixed_Standard_40	40	36.5	29.2 91.3	36.1	13.9	90.2	72.6	Mixed_Standard_40	80	69.9	14.1	87.4
Mixed_Standard_80	80	74.9	19.2 93.6	70.2	7.7	87.7	145	Mixed_Standard_80	160	150	12.9	93.7
Mixed_Standard_160	160	148	0.2 92.8	146	8.9	91.2	294	Mixed_Standard_160	320	288	0.2	90.1
Mixed_Standard_320	320	342	9.9 106.9	337	6.1	105.5	680	Mixed_Standard_320	640	684	0.3	106.8
Mixed_Standard_640	640	723	5.4 113.0	731	3.3	114.3	1454	Mixed_Standard_640	1280	1576	6.0	123.1
Mixed_Standard_1280	1280	1400	11.9 109.4	1381	10.6	107.9	2781	Mixed_Standard_1280	2560	2745	12.7	107.2
Mixed_Standard_2560	2560	2357	8.8 92.1	2366	0.2	92.4	4723	Mixed_Standard_2560	5120	4647	7.4	90.8



Total Ab quantified by either common peptide or summing various forms

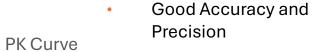
Peptide ADC - 2 Plex

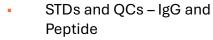
Hybrid LCMS with Anti-human IP

- Affinity Capture Total Ab with Antihuman Ig.... Then detect
 - Generic peptides from Fc region of Ab (FNW, GPS etc)
 - Peptide peptide released during digestion

- Can digest with various enzymes to give good coverage of Ab and Peptide (conjugate)
 - Ab
 - FC region FNW, GPS, etc
 - Peptide
 - Cleave various parts of peptide

Peptide ADC


Hybrid LCMS with Anti-human IP


		Theoretical		Mean		
	Component	Concentration	Replicates	Concentration		%
Row	Name	(ng/mL)	Used	(ng/mL)	% CV	Accuracy
1	GPS-IgG	10	2 of 2	10.525	7.2	105.2
2	GPS-IgG	20	2 of 2	17.544	16.8	87.7
3	GPS-IgG	40	2 of 2	40.938	17.9	102.4
4	GPS-IgG	80	2 of 2	77.924	8.8	97.4
5	GPS-IgG	160	2 of 2	169.057	2.3	105.7
6	GPS-IgG	320	2 of 2	344.231	8.6	107.6
7	GPS-IgG	640	2 of 2	675.342	4.5	105.5
8	GPS-IgG	1280	1 of 2	1053.414	0.0	82.3
9	GPS-IgG	2560	2 of 2	2842.382	12.0	111.0
10	GPS-IgG	5120	2 of 2	4420.698	15.2	86.3

		Theoretical		Mean		
	Component	Concentration	Replicates	Concentration		%
Row	Name	(ng/mL)	Used	(ng/mL)	% CV	Accuracy
1	Peptide	10	2 of 2	10.552	15.5	105.5
2	Peptide	20	2 of 2	17.686	12.0	88.4
3	Peptide	40	2 of 2	41.199	11.4	103.0
4	Peptide	80	2 of 2	79.019	12.9	98.8
5	Peptide	160	2 of 2	144.396	24.4	90.2
6	Peptide	320	2 of 2	307.544	6.3	96.1
7	Peptide	640	2 of 2	788.759	13.0	123.2
8	Peptide	1280	2 of 2	1398.516	6.4	109.3
9	Peptide	2560	2 of 2	2492.635	19.5	97.4
10	Peptide	5120	2 of 2	4508.361	15.0	88.0

Component	Theory Conc	Replicates	Conc		%
Name	(ng/mL)	Used	(ng/mL)	% CV	Accuracy
GPS-IgG	10	3 of 3	12.548	1.8	125.5
GPS-IgG	30	3 of 3	31.433	9.4	104.8
GPS-IgG	250	3 of 3	287.978	18.5	115.2
GPS-IgG	4000	3 of 3	4030.38	4.5	100.8

Component	Theory Conc	Replicates			%
Name	(ng/mL)	Used	Conc (ng/mL)	% CV	Accuracy
Peptide	10	2 of 3	8.67	13.7	86.7
Peptide	30	3 of 3	31.379	17.4	104.6
Peptide	250	3 of 3	295.459	7.5	118.2
Peptide	4000	3 of 3	4259.131	7.4	106.5

- General overlap
- Some deviation at later timepoints
 - Stability?

─IgG

----Peptide

2500

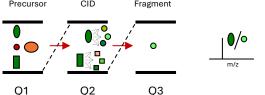
2000

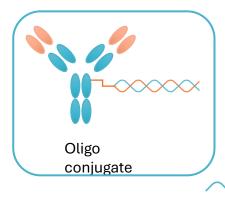
1500 m/gn 000

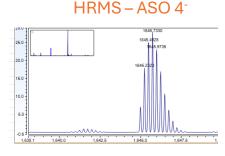
Oligonucleotides siRNA, ASO, ARCs

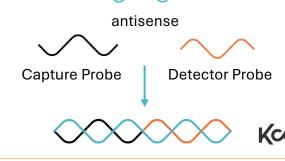
Background and Case Studies

QqQ and HRMS

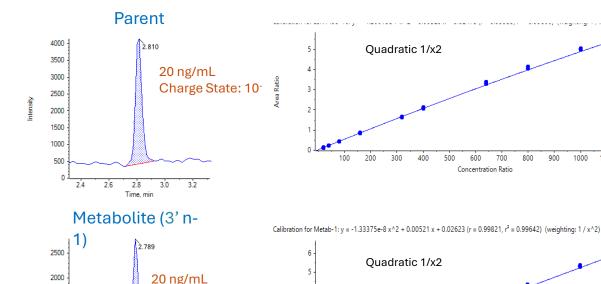



Oligonucleotide Bioanalysis – ARCs/siRNA


KCAS Assay approaches – Experience/Strategies


- Most recent Experience siRNA, Antisense and ARCs Hybrid or "traditional" LC-MS/MS on OgO or HRMS
 - Early Discovery before Tox (HRMS quick MD, sense and ASO info, some metabolite)
 - Tox/GLP typically either HRMS or QqQ
- LC-MS/MS (QqQ 5 -50ng/mL or HRMS 1-20ng/mL)
 - · Good when don't have any reagents
 - Also provides metabolite information
 - Sensitivity ng/mL
 - Advantages/disadvantages for QqQ vs HRMS
- Hybridization ELISA 100s pg/mL
 - Need specific probe (long if need Capture and Detector)
 - Sensitivity can be 0.1 ng/mL but limited dynamic range (20-50x)
 - Typically cannot differentiate N-1 and N-2 from parent
- PCR 10's pg/mL
 - Need specific probes
 - Good sensitivity
- Hybridization LC-MS/MS (PNA, LNA) 100's pg/mL low ng/mL
 - · Good specificity and good sensitivity
 - Need specific probe but only for capture
 - Common sequences (generic approach)?
- UPLC-FD low ng/mL
 - · Good sensitivity
 - Needs fluorescent tag/probe
 - Common method

Multiple Reaction Monitoring/QQQ



Assay Optimization – QqQ – 2 plex assay

200

300

Analyte and Metabolite quant in 1 assay

Charge State: 9-

1500

1000

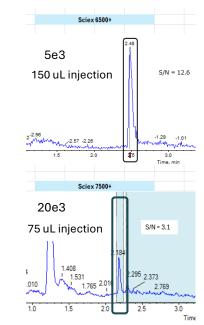
500

2.6

Time, min

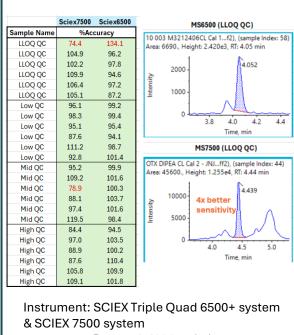
- ARC associated antisense assay
- Assay developed on SCIEX 7500 system
- 2-plex for LLOQ at 20 ng/mL in Cyno Plasma (Parent and Metabolite)
- Metabolite conjugate 3' n-1 of parent oligo (Antibody unchanged)
- IP Assay optimized with higher amounts of capture to allow for simultaneous quantitation of parent oligo conjugate and metabolite conjugate
- Metabolite elutes slightly before parent (no contribution observed)
- Curve Range 20-1,280 ng/mL
- 2-plex method fully validated with GLP sample analysis

Confidential - Company Proprietary

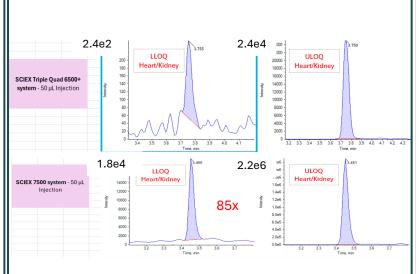

700

Concentration Ratio

1000 1100


Achieving the desired LLOQ

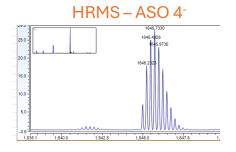
Instrument choice - Oligo dependent


Instrument: SCIEX Triple Quad 6500+ system & SCIEX 7500 system 25 ng/mL Molecule: T-AS (ARC dosed)

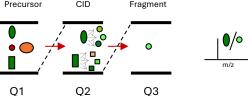
See 2x worse sensitivity with using SCIEX 7500 system

Range: 4-4000 ng/mL Molecule: Duplex (~31Mer)

See 4x better sensitivity with using SCIEX 7500 system and DIPEA


Sample: 5 ng/mL (LLOQ) and 1280 ng/mL ULOQ extracted ARC sample

- SCIEX 7500 system gave ~ 85x higher sensitivity compared to SCIEX Triple Quad 6500+ system in Cyno heart/kidney homogenate samples
- Ion spray Voltage played a crucial role in sensitivity gain – 4x from 1700 to 4500


Kcas bio

QQQ vs HRMS

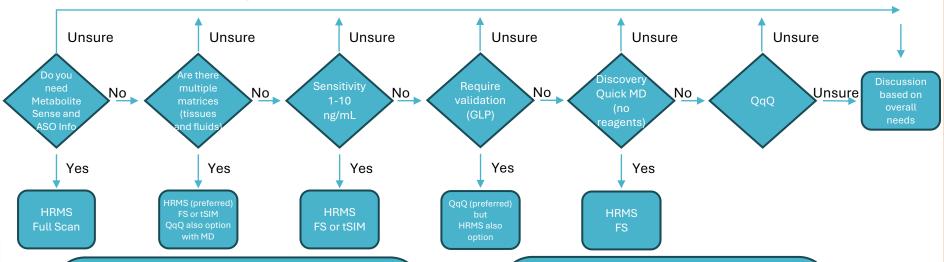
Adv and Disadvantages

Multiple Reaction Monitoring/QQQ

HRMS

- Limited MD
- Sense and Antisense info Full scan
- Good overall sensitivity 1-20 ng/mL
- Clear advantages when have interferences in specific matrices
- Works well when oligo doesn't fragment well
- More complicated data analysis (slower)
- Bigger file size Need to have data storage plan
- Better SLIS differentiation due to lower charge state (less cross talk/interference

QqQ


- MRM specific MD
 - Varies per matrix need to chromatographically separate interferences not typical seen in HRMS
- Decent but variable sensitivity
- Easy data processing
- Good for regulated studies
- SLIS can contribute to cross talk – interferences

QqQ vs HRMS

Oligo HRMS vs QqQ Decision Tree

Decision Tree - Oligos

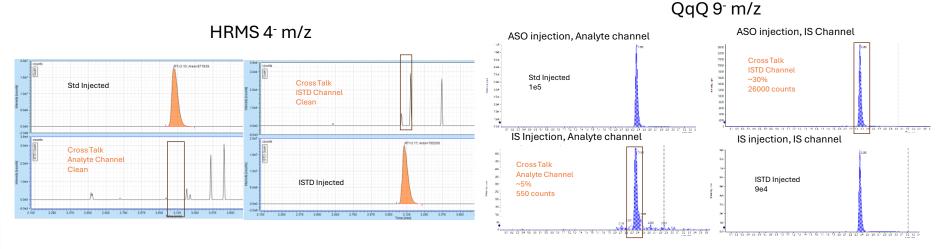
HRMS vs QqQ

- QqQ is the workhorse for targeted quant
 - high throughput
 - quick data processing
 - small file size

BUT

 HRMS has a lot of power and can be more sensitive with less specific method development

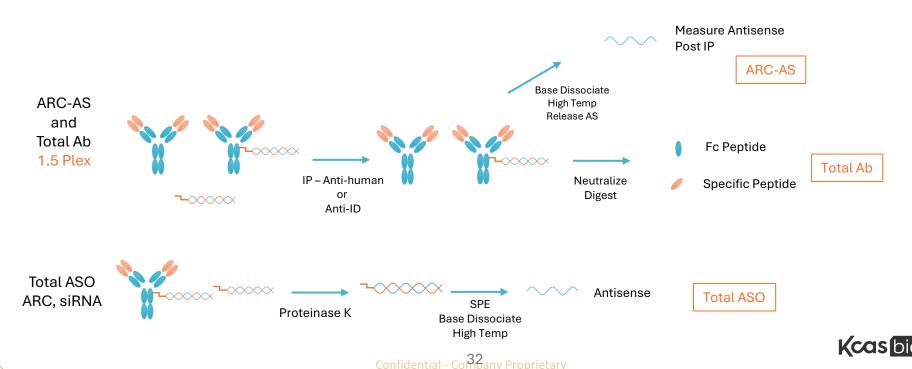
Philosophy Points to consider


- What sensitivity is needed
 - GLP or NonGLP
- Metabolite Info or Sense and ASO
 - Multiple matrices
 - Quick MD Full Scan data
 - Does Oligo Fragment
 - SLIS
 - Is File Size Important

ndential - Company Pio

QqQ vs HRMS

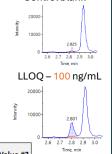
SLIS Cross Talk


- Stable labeled internal standard 27 Dalton delta
 - QqQ 9 charge state only 3 dalton difference = cross talk
 - HRMS 4 charge state ~7 dalton difference and HRMS = NO cross talk

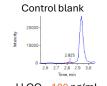
Case Study – Antibody RNA Conjugate and siRNA - QqQ

ARC, Total Antisense and Total Ab (1.5 plex for ARC-AS and Total Ab)

 Goal: To develop a PK assay for an ARC (Antibody-siRNA-Conjugate) for ARC, total antisense and total IgG in various preclinical matrices



Case Study ARC and Total Ab – 1.5 Plex - QqQ

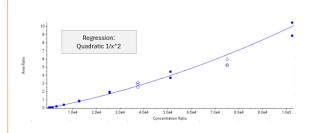

ARC associated AS and CDR Peptide – Split Sample

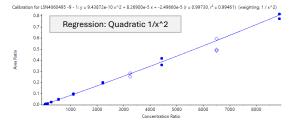
Total Ab Assay - CDR Peptide

Actual Conc Component Mean STDev % CV % Accuracy Value #1 Value #2 (ng/mL) CDR Peptide 100 2 of 2 105.84 105.8 96.34 115.34 95.4 197.81 183.82 89.3 329.66 384.82 769.95 753,49 1600 91.9 1484.20 1455.16 3200 104.5 3181.78 3508.64 100.7 6315.61 6400 2 of 2 6447.62 6579.64 12800 106.0 13224.17 13920.74 108.9 27310.55 28432.25 25600 2 of 2 27871.40 793.17 2.9 2 of 2 52218.09 5386.08 10.3 102.0 2 of 2 99842.96 8334.18 8.4 102400 97.5 105736.11 93949.80

QC	Component	Actual Conc (ng/mL)	No	Mean	STDev	% cv	% Accuracy	Value #1	Value #2	Value #3
LLOQ	CDR Peptide	100	3 of 3	98.6	3.6	3.6	98.6	102.6	96.0	97.0
Low	CDR Peptide	600	3 of 3	549.4	34.5	6.3	91.6	522.9	536.9	588.4
Med	CDR Peptide	37500	3 of 3	39137.8	3150.2	8.1	104.4	35738.6	39715.9	41958.9
High	CDR Peptide	75000	3 of 3	65737.4	3722.5	5.7	87.7	62965.7	64278.1	69968.5

ARC-AS Assay – antisense

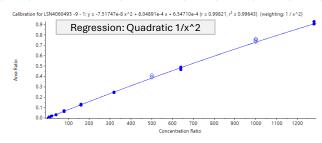

Row	Component	Actual Conc (ng/mL)	No	Mean	STDev	% cv	% Accuracy	Value #1	Value #2
1	Antisense Strand	34.6	2 of 2	36.5	2.9	7.9	105.3	34.4	38.5
2	Antisense Strand	69.3	2 of 2	62.1	3.8	6.2	89.6	59.4	64.8
3	Antisense Strand	138.6	2 of 2	138.7	0.0	0.0	100.1	138.6	138.7
4	Antisense Strand	277.1	2 of 2	267.8	6.0	2.2	96.7	263.6	272.0
5	Antisense Strand	554.2	2 of 2	564.6	39.4	7.0	101.9	536.7	592.4
6	Antisense Strand	1108.4	2 of 2	1142.6	37.0	3.2	103.1	1168.7	1116.4
7	Antisense Strand	2216.8	2 of 2	2313.8	49.8	2.2	104.4	2278.6	2349.1
8	Antisense Strand	4433.5	2 of 2	4448.7	465.0	10.5	100.3	4119.9	4777.5
9	Antisense Strand	8867.0	2 of 2	8740.8	313.1	3.6	98.6	8962.2	8519.4

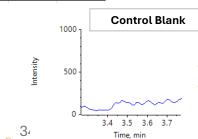

QC	Component	Actual Conc (ng/mL)	No	Mean	STDev	% cv	% Accuracy	Value #1	Value #2	Value #3
Low	Antisense Strand	52.0	3 of 3	53.7	3.9	7.3	103.3	49.7	53.8	57.5
Med	Antisense Strand	3247.2	3 of 3	3184.1	203.1	6.4	98.1	2949.6	3295.5	3307.1
	Antisense Strand		3 of 3	5944.9	642.4	10.8	91.5	5636.0	5515.4	6683.4

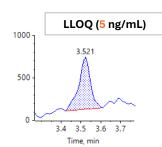
SCIEX 7500 System - Monkey Plasma

- Prevalidation Data Both Assays
- Accuracy and Precision < 20%
- ARC signal is after IP enrichment and then release of antisense (ASO)
- Surrogate peptide chosen CDR Peptide (more specific)

SCIEX Triple Quad 6500+ system - Monkey Plasma


Case Study – Total Antisense - QqQ

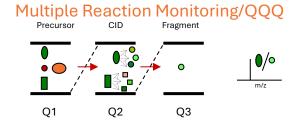

Example – Calibration Standards & Quality Controls

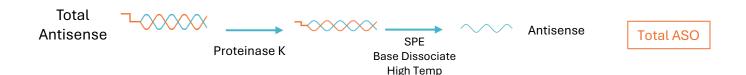

Row	Component	Actual Conc (ng/mL)	No	Mean	STDev	% CV	% Accuracy	Value #1	Value #2
1	Antisense Strand	5.0	2 of 2	5.0	0.3	6.7	99.3	5.2	4.7
2	Antisense Strand	10.0	2 of 2	9.9	1.1	10.6	98.9	9.2	10.6
3	Antisense Strand	20.0	2 of 2	21.4	0.1	0.3	107.0	21.4	21.3
4	Antisense Strand	40.0	2 of 2	38.2	0.4	1.1	95.5	38.5	37.9
5	Antisense Strand	80.0	2 of 2	80.4	5.7	7.1	100.5	84.5	76.4
6	Antisense Strand	160.0	2 of 2	160.6	8.9	5.5	100.4	154.3	166.9
7	Antisense Strand	320.0	2 of 2	315.7	3.7	1.2	98.7	313.1	318.3
8	Antisense Strand	640.0	2 of 2	631.2	24.3	3.9	98.6	648.3	614.0
9	Antisense Strand	1280.0	2 of 2	1295.1	28.8	2.2	101.2	1274.8	1315.5

QC	Component	Actual Conc (ng/mL)	No	Mean	STDev	% cv	% Accuracy	Value #1	Value #2	Value #3
LLOQ	Antisense Strand	5.0	3 of 3	4.9	0.6	11.8	98.1	5.5	5.0	4.3
Low	Antisense Strand	15.0	2 of 2	15.4	0.2	1.5	102.5	15.2	15.5	N/A
Med	Antisense Strand	500.0	3 of 3	520.0	15.2	2.9	104.0	510.4	512.0	537.5
High	Antisense Strand	1000.0	3 of 3	1030.1	21.4	2.1	103.0	1051.9	1009.1	1029.2

- Method Development
 - Total Antisense in Antibody-siRNA-Conjugate (ARC)
- Range: 5 ng/mL 1280 ng/mL
- Matrix: Cynomolgus Heart/ Kidney Homogenate
- Detector: SCIEX Triple Quad 6500+ system
- Mobile Phases:
 - Mobile Phase A: 1% HFIP, 0.2% TEA in Deionized Water
 - Mobile Phase B: 1% HFIP, 0.2% TEA in Methanol
 - Rinse Solution: 1% HFIP, 0.2% TEA in Methanol
- Analytical Column: Phenomenex bioZen 1.7 μm Oligo 50 X 2.1 mm
- Run Time 8.5 min

Case Study – siRNA QqQ

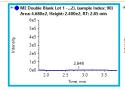

Good sensitivity by QqQ – various species/matrices

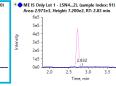

• Goal: To develop a PK assay for a total antisense (siRNA) via ASO in various rat and cyno tissues in a triple quad

Assay needs to be sensitive and developed across 2 species (Rat and Cyno) across several tissue matrices

- Rat
- Brain, Liver, Kidney
- Cyno
 - Brain Liver, Kidney, Gastro

Each matrix will need to be optimized for interferences as necessary

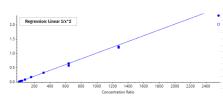


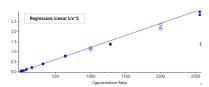


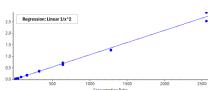
Case Study – siRNA QqQ

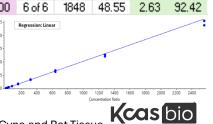
Cyno Tissues

- Assay Range 5-2560 ng/mL
- Linear all tissues
- All passing PA 15/20%


Brain

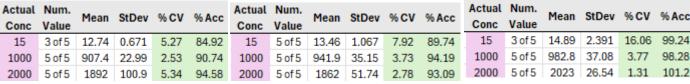

Kidney

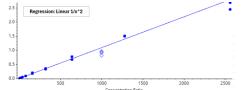

Liver

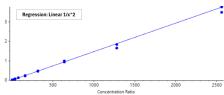

Gastro

Actual	Num.					Actual	Num.					Actual	Num.					Actual	Muss				
Conc	Value	Mean	StDev	%CV	% Acc	Conc	Value	Mean	StDev	% CV	% Acc	Conc	Value	Mean	StDev	% CV	% Acc	Actual	Num.	Mean	StDev	%CV	%Acc
5	2 of 2	4.8	1.2	24.0	96.6	5	2 of 2	4.861	0.15	3.09	97.22	5	2 of 2	4.853	1.023	21.09	97.07	Conc					07.17
10	2 of 2	10.1	0.0	0.4	100.7	10	2 of 2	10.56	0.382	3.62	105.6	10	1 of 2	11.19	N/A	N/A	111.9	5	2 of 2	4.858	0.087	1.79	97.17
20	2 of 2	21.8	1.2	5.7	109.2	20	2 of 2	19.96	0.729	3.66	99.78	20	1 of 2	17.71	N/A	N/A	88.53	20	2 of 2	10.25	0.224	2.19	102.5
40	2 of 2	42.1	0.7	1.7	105.3	40	2 of 2	39.22	0.512	1.31	98.05	40	2 of 2	43.63	2.032	4.66	109.1	40	2 of 2	20.7 41.89	0.381 0.281	1.84 0.67	103.5 104.7
80	2 of 2	80.6	1.6	2.0	100.7	80	1 of 2	77.74	N/A	N/A	97.17	80	2 of 2	82.18	2.5	3.04	102.7	80	2 of 2 2 of 2	80.86	1.401	1.73	104.7
160	2 of 2	169.1	1.1	0.7	105.7	160	2 of 2	177.9	0.076	0.04	111.2	160	2 of 2	167.3	6.124	3.66	104.6	160	2 of 2	163	4.939	3.03	101.9
320	2 of 2	315.0	2.8	0.9	98.5	320	2 of 2	332	8.704	2.62	103.8	320			18.12	5.58	101.4	320	2 of 2	322.9	10.7	3.31	100.9
640	2 of 2	603.2	49.8	8.3	94.3	640	2 of 2	640.1	22.16	3.46	100	640		611.2		1.94	95.5	640	2 of 2	638.1	33.44	5.24	99.7
1280	2 of 2	1206.8	20.4	1.7	94.3	1280	2 of 2	1158	9.831	0.85	90.49	1280	2 of 2	1239	4.888	0.39	96.79	1280	2 of 2	1211	50.18	4.14	94.62
2560	1 of 2	2296.3	N/A	N/A	89.7	2560	1 of 2	2320	N/A	N/A	90.61	2560	1 of 2	2185	N/A	N/A	85.35	2560	2 of 2	2403	117	4.87	93.87
Actual	Num.		C+D	0/ OV	% Acc	Actual	Num.	Mean	StDay	% CV	96 Acc	Actual	Num.	M	C+D	0/ OV	06.4	Actual	Num.	Maan	C+Dav	0/ OV	06 4
Conc	Value	Mean	StDev	% CV	% ACC	Conc	Value	rican	SIDEV	70 0 0	70 ACC	Actual Conc	Value	Mean	Sibev	70 CV	% ACC	Actual Conc	Value	riean	Sibev	70 C V	70 ACC
15	5 of 5	12.9	1.2	9.2	86.0	15	5 of 5	12.35	0.877	7.1	82.34	15	4 of 5	12.74	1.203	9.44	84.91	15	6 of 6	14.15	0.374	2.65	94.33
1000	5 of 5	925.2	15.1	1.6	92.5	1000	5 of 5	937.8	14.47	1.54	93.78	1000	5 of 5	926.9	26.72	2.88	92.69	1000	6 of 6	934.5	30.47	3.26	93.45
2000	5 of 5	1779.3	44.8	2.5	89.0	2000	5 of 5	1777	65.45	3.68	88.85	2000	5 of 5	1803	57.94	3.21	90.14	2000	6 of 6	1848	48.55	2.63	92.42
												1	Regression: Linea	-11-10					Regression: Linear				

347 24-11-13 to 25-01-03 LC62 Cyno and Rat Tissue

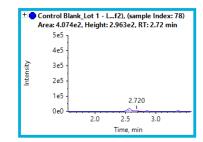

Case Study – siRNA QqQ

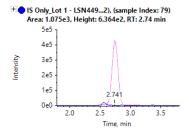

Rat Tissues


- Assay Range 5-2560 ng/mL
- Linear all tissues
- PA 15/20% (1 out at 10 in Liver)

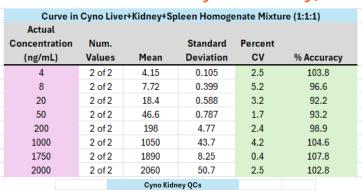
Brain Kidney

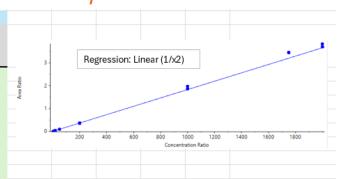
Actual	Num.	Mean	StDay	96 CV	% Acc	Actual	Num.	Moon	C+Dour	94 CV	04 4 00	Actual	Num.	Maan	C+Day.	04 CV	04 4 00
Conc	Value	ricali	SIDEV	70 C V	70 ACC	Conc	Value	Mean	Sibev	70 CV	% Acc	Conc	Value	Mean	Sibev	90 C V	90 ACC
5	1 of 2	4.575	N/A	N/A	91.51	5	2 of 2	4.841	0.909	18.78	96.83	5	1 of 2	5.676	N/A	N/A	113.5
10	2 of 2	10.41	0.075	0.72	104.1	10	2 of 2	9.967	0.978	9.81	99.67	10	1 of 2	8.165	N/A	N/A	81.65
20	2 of 2	20.92	2.216	10.59	104.6	20	2 of 2	21.13	1.042	4.93	105.7	20	2 of 2	17.92	1.187	6.62	89.62
40	2 of 2	42.42	1.233	2.91	106.1	40	2 of 2	45.23	3.332	7.37	113.1	40	2 of 2	39.11	0.732	1.87	97.78
80	2 of 2	82.76	3.638	4.4	103.5	80	2 of 2	82.68	0.857	1.04	103.4	80	2 of 2	85.47	3.921	4.59	106.8
160	2 of 2	166.3	0.075	0.04	103.9	160	2 of 2	165.6	3.814	2.3	103.5	160	2 of 2	170	7.667	4.51	106.2
320	2 of 2	312.9	20.23	6.47	97.77	320	2 of 2	332.2	16.43	4.95	103.8	320	2 of 2	331.2	14.95	4.51	103.5
640	2 of 2	639.2	38.34	6	99.88	640	2 of 2	612.6	27.54	4.5	95.72	640	2 of 2	664	19.62	2.96	103.7
1280	2 of 2	1231	3.569	0.29	96.2	1280	2 of 2	1197	71.1	5.94	93.49	1280	2 of 2	1294	55.5	4.29	101.1
2560	2 of 2	2258	52.51	2.33	88.19	2560	2 of 2	2174	48.92	2.25	84.94	2560	2 of 2	2396	115	4.8	93.58
Actual	Num.	Mean	StDev	% CV	% Acc	Actual	Num.	Mean	StDev	% CV	% Acc	Actual	Num.	Mean	StDev	% CV	% Acc
_	11.	rivani	01004	/U U V	WHOO		11-1	rivani	01004	70.00	707100	Cono	Walna				

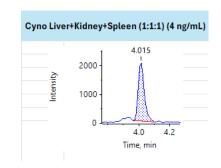




Liver







Surrogate Matrix Choices

P&A Data for Cyno Kidney, Liver and Spleen

	Cyno	Kidney QC	s		
Actual Concentration (ng/mL)	Num. Values	Mean	Standard Deviation	Percent CV	% Accuracy
4	6 of 6	4.21	0.446	10.6	105.2
12	6 of 6	12.2	0.641	5.3	101.6
400	6 of 6	416	15.5	3.7	104.0
1500	6 of 6	1590	96.6	6.1	106.1
	Cyno	Spleen QC	s		
Actual Concentration (ng/mL)	Num. Values	Mean	Standard Deviation	Percent CV	% Accuracy
4	6 of 6	3.31	0.198	6.0	82.7
4 12	6 of 6 6 of 6	3.31 9.62	0.198 0.418	6.0 4.3	82.7 80.2
12	6 of 6	9.62	0.418	4.3	80.2
12 400	6 of 6 5 of 5 6 of 6	9.62 387	0.418 14.2 86	4.3 3.7	80.2 96.7
12 400	6 of 6 5 of 5 6 of 6	9.62 387 1450	0.418 14.2 86	4.3 3.7	80.2 96.7
12 400 1500 Actual Concentration	6 of 6 5 of 5 6 of 6 Cyno	9.62 387 1450 Liver QC:	0.418 14.2 86 Standard	4.3 3.7 5.9	80.2 96.7 96.5

471

1500

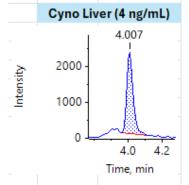
14.7

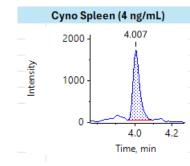
28.2

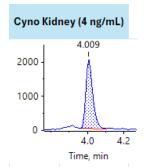
3.1

1.9

94.2

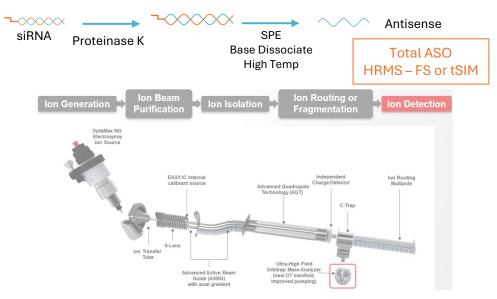

100.1

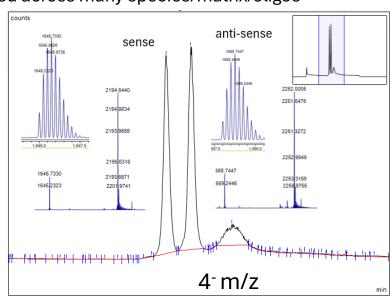

500


1500

6 of 6

6 of 6




Kcas bio

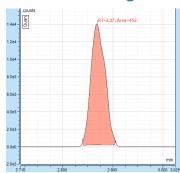
Case Study – siRNA – HRMS

Advantages of HRMS for "Discovery"

• Goal – to quickly be able to develop a "discovery" level method for various siRNA molecules on HRMS to determine an overall LLOQ and general method to be used across many species/matrix/oligos

- Full scan data in more discovery/non-GLP setting to get most information at quickest pace
- Get anti-sense and sense data
- Typically follow 3 or 4 charge state using similar gradient with Oligo column and ion pairing agent
- Important to use high purity solvents to minimize adducts etc.

Case Study – siRNA – HRMS

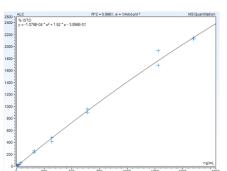

Rat Plasma – siRNA 1 - Precision and Accuracy

			S	tandard	İs		
Name	Theo. Amt ng/mL	Amount ng/mL	%Accuracy	Count	Average Amount	Average Accuracy	%CV
STD 12.5	12.5	12.6	98.83				
STD 12.5	12.5	11.6	107.1	2	12.13	97.0	6.02
STD 25	25	25.9	96.52				
STD 25	25	23.4	106.32	2	24.65	98.6	7.03
STD 50	50	53.8	92.34				
STD 50	50	57.3	85.48	2	55.54	111.1	4.36
STD 100	100	107.1	92.86				
STD 100	100	107	92.99	2	107.08	107.1	0.09
STD 200	200	206	96.98				
STD 200	200	213.4	93.3	2	209.72	104.9	2.48
STD 400	400	371.4	107.15				
STD 400	400	391.6	102.1	2	381.5	95.4	3.74
STD 800	800.00	757.2	105.35				
STD 800	800.00	780.2	102.47	2	768.7	96.1	2.12
STD 1400	1,400.00	1374.4	101.83				
STD 1400	1,400.00	1336.8	104.52	2	1355.56	96.8	1.96
STD 1600	1,600.00	1483	107.32				
STD 1600	1,600.00	1495.2	106.55	2	1489.07	93.1	0.58

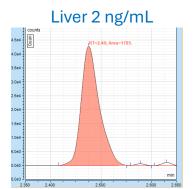
			Quality Co	ontrols			
Name	Theo. Amt ng/mL	Amount ng/mL	% Accuracy	Count	Average Amount	Average Accuracy	%CV
QC 12.5	12.5	12.4	101.02				
QC 12.5	12.5	12.5	100.19				
QC 12.5	12.5	10.4	116.86				
QC 12.5	12.5	12.7	98.3	4	12.0	96.0	7.8
QC37.5	37.5	40.7	91.44				
QC37.5	37.5	41.9	88.32				
QC37.5	37.5	40	93.44				
QC37.5	37.5	41.1	90.46	4	40.9	109.1	1.7
QC 600	600	661.7	89.72				
QC 600	600	678.6	86.91				
QC 600	600	656.3	90.62				
QC 600	600	655.9	90.69	4	663.1	110.5	1.4
QC 1200	1200	1357.5	86.87				
QC 1200	1200	1372	85.67				
QC 1200	1200	1289.6	92.53				
QC 1200	1200	1263.7	94.69	4	1320.7	110.1	3.4

Plasma 12.5 ng/mL

- PA in Rat Plasma
- Range 12.5-1600 ng/mL
- Limited MD, Full Scan
- Sense and Antisense data



Case Study – siRNA – HRMS


Rat Liver Homogenate – siRNA 1 - Precision and Accuracy

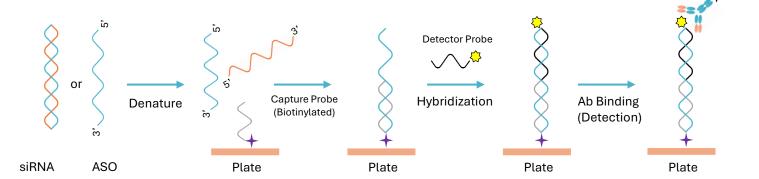
				Stan	dards		
Name	Theo. Amt ng/mL	Amount ng/mL	%Accuracy	Count	Average Amount	Average Accuracy	%CV
Std 2	2	2.00801	100.40058				
Std 2	2	1.92926	96.462959	2	1.968635415	98.4	2.8
Std 4	4	4.11562	102.89048				
Std 4	4	4.01507	100.37668	2	4.065343053	101.6	1.7
Std 10	10	10.0344	100.34394				
Std 10	10	10.6959	106.9588	2	10.36513713	103.7	4.5
Std 20	20	19.002	95.009803				
Std 20	20	21.766	108.83017	2	20.38399706	101.9	9.6
Std 40	40	38.4945	96.236125				
Std 40	40	38.8612	97.152954	2	38.6778158	96.7	0.7
Std 160	160	156.265	97.665401				
Std 160	160	172.246	107.65374	2	164.2553129	102.7	6.9
Std 320	320	277.636	86.761298				
Std 320	320	320.574	100.17936	2	299.1050544	93.5	10.2
Std 640	640	660.043	103.13171				
Std 640	640	616.536	96.333777	2	638.289543	99.7	4.8
Std 1280	1,280	1216.84	95.065483				
Std 1280	1,280	1414.58	110.51418	2	1315.709814	102.8	10.6
Std 1600	1600	1594.81	99.675385				
Std 1600	1600	1578.18	98.636293	2	1586.493428	99.2	0.7

			Quality Co	ontrols			
Name	Theo. Amt ng/mL	Amount ng/mL	% Accuracy	Count	Average Amount	Average Accuracy	%CV
Liver QC2	2	1.69	84.75				
Liver QC2	2	1.88	94.05				
Liver QC2	2	2.24	111.86	3	1.9	96.9	14.2
Liver QC6	6	5.85	97.55				
Liver QC6	6	7.04	117.33				
Liver QC6	6	6.87	114.51	3	6.6	109.8	9.7
Liver QC 600	600	625.53	104.25				
Liver QC 600	600	672.01	112.00				
Liver QC 600	600	641.59	106.93	3	646.4	107.7	3.7
Liver QC 1200	1200	1219.89	101.66				
Liver QC 1200	1200	1145.42	95.45				
Liver QC 1200	1200	1289.39	107.45	3	1218.2	101.5	5.9

- PA in Rat Liver Homogenate
- Range 2-1600 ng/mL
- Limited MD, Full Scan
- Sense and Antisense data

Case Study – siRNA – hELISA

Hybridization ELISA for siRNA or Anti-sense Oligo


 Goal – To develop a hybridization ELISA in NHP Plasma for PK measurement of a gene therapy drug Sense 5'
Anti-Sense 3'
Capture Probe (Biotin)
Detector Probe (Digoxigenin)
Anti-DiG Antibody (Detection)

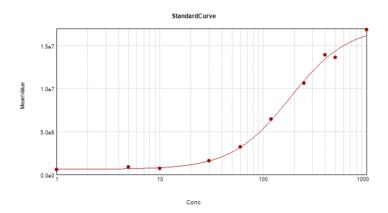
Background

- SiRNA
- Previous method (colorimetric) had some high background interference

Approach

- Dual Hybridization Assay with 1 capture oligo and 1 detector oligo
 - Capture probe Biotinylated on SA Plate
 - Detector Probe (labeled with Dig)
- Optimize Assav
 - · Anti-Dig Ab
 - Fluorescent detection, screen substrates

Case Study – siRNA – hELISA


Oligo PK for siRNA - Data in NHP plasma

- Challenge: Client had developed an internal method with a high background.
- Solution: Performed troubleshooting (plates, buffers, and detection labels) approaches.

Outcome:

- Identified plate type, optimal buffer, optimal DIG labeled detector, and fluorescence substrate.
- Plasma method can be adopted to tissues as needed.
- Fit-For Purpose non-regulated performance characteristics below
- · Tested pre-clinical samples for support of NHP Study

Performance Charateristics	Result (ng/mL)
Range of quantification	1-500 (%RE Range 5.7% to 10.5%)
HQC	370 (%RE Range 3.0% to 14.1%)
MQL	50 (%RE Range 1.0% to 14.7%)
LQC	15 (%RE Range 1.0% to 11.1%)
A/P	Passed (3 A/P runs performed)
Selectivity HQC	370 (%RE 0.4 to 18.8)
Selectivity LQC	15 (%RE Range 0.6% to 17.7%)

Conclusion

- Research Grade (FFP) method developed to measure non-GLP samples
- LLOQ 1 ng/mL

Summary/Conclusions

ADCs, ARCs/AOCs, Oligos etc

- Pharmaceutical and Biotech companies continue to develop complicated, multifaceted drugs. This continues to push the Bioanalysis community into constantly re-evaluating and driving the science to support these new modalities
- As challenging modalities continue to emerge (ADCs, ARCs, bi/tri specifics etc), LC-MS/MS and/or Hybrid LC-MS/MS is becoming increasingly utilized for bioanalytical assays in drug development
 - Additional selectivity/specificity or information
 - Ability to multiplex and translate assays between species and matrices
- ADCs
 - Many types of ADCs in development requiring several assays to properly "characterize" the therapeutic
 - Can require several bioanalytical strategies/techniques depending on the need
- Oligos Conjugates or stand alone (siRNA, ASO, etc)
 - Many different complimentary techniques for the analysis of oligonucleotides
 - Each have advantages and disadvantages (LCMS, LBA, Hybrid, PCR, HPLC, etc)
 - Oligo analysis (ARCs or ASO) LCMS
 - Choices
 - "Traditional" vs "Hybridization" techniques
 - QqQ vs HRMS
 - o Dedicated instruments ion pairing chromatography painful for flexibility at CRO
- Recommendation to choose a CRO that has ability to support these complicated therapeutics with several bioanalytical techniques/strategies

Thank you

Dawn R Dufield PhD

Dawn.Dufield@kcasbio.com

