Moxifloxacin-13C,d3, Pyrazinamide-15N,d3, and Moxifloxacin to Optimize Tuberculosis Treatment in Children Using LC-MS/MS

William R. Martin1, Moo-Young Kim1, Andrew Mayer1, Susan Abdel-Rahman2, Gene Ray1; 1KCAS, Shawnee, Kansas, 2Children’s Mercy Hospital, Kansas City, Missouri

INTRODUCTION

Despite recent changes in the pediatric tuberculosis (TB) treatment guidelines published by the World Health Organization, there is limited data on the dose-exposure relationships of anti-TB drugs in the majority of the world’s pediatric population. The ability to conduct comprehensive pharmacokinetic (PK) studies using traditional venipuncture is not feasible in remote, resource-constrained settings. This study was designed to validate a rapid and reproducible LC-MS/MS method for the measurement of clinically relevant concentrations of Ethambutol (ETH), Pyrazinamide (PZA), and Moxifloxacin (MOX) from dried blood spots (DBS). The availability of DBS-based assays would permit PK studies and therapeutic monitoring of children residing in low-income, high-burden countries to optimize the treatment in various TB populations. The DBS format will be utilized for therapeutic drug monitoring (TDM) and will facilitate genetic analyses in combinatorial therapies to optimize treatment in children through a NIH-funded project.

METHOD

ETH, PZA, and MOX were validated in DBS with K12EDTA whole blood. ETH and MOX over a concentration range of 0.10 to 10 µg/mL and PZA over a concentration range of 1.00 to 100 µg/mL. Blood containing ETH, PZA, and MOX was spotted onto untreated DBS cards (Perkin Elmer 226) and 7 mm punches were used for analysis. Each punch was placed in extraction solvent (90/10 Methanol/Water, 300 µL) containing Ethambutol-d4, Pyrazinamide-15N,d3, and Moxifloxacin-13C,d3 (I.S.) and sonicated for 60 minutes. A 100 µL aliquot from each extract was transferred to injection vials with 300 µL of 0.1% formic acid in deionized water.

Stability of ETH, PZA, and MOX

The stability of each analyte in whole blood was investigated after being placed onto the DBS cards. Stability data was generated under storage conditions of 57 days at room temperature, 57 days at 30°C, and a Relative Humidity of 65%. In each instance EMB, PZA, and MOX demonstrated acceptable precision and accuracy meeting the FDA guidelines for all tested storage conditions.

RESULTS

The responses were linear over a range of 0.10 to 10 µg/mL for ETH and MOX and 1.00 to 100 µg/mL, for PZA with weighted linear regression (1/x). The correlation coefficient was 0.993 or better for all analytes (Figure 1).

Figure 1. Typical Calibration Curves for ETH, PZA, and MOX Using DBS Method

The analytes were detected using an AB Sciex API 3000 LC-MS/MS system under positive MRM mode.

Figure 2 through 4 Show Typical Chromatograms at the Lower Limit of Quantitation (LLOQ) level for ETH, PZA, and MOX.

Figure 2. Chromatogram of an Extracted ETH LLOQ (0.10 µg/mL).

Figure 3. Chromatogram of an Extracted PZA LLOQ (1.00 µg/mL).

Figure 4. Chromatogram of an Extracted MOX LLOQ (0.10 µg/mL).

Figure 2. Chromatogram of an Extracted ETH LLOQ (0.10 µg/mL).

Figure 3. Chromatogram of an Extracted PZA LLOQ (1.00 µg/mL).

Figure 4. Chromatogram of an Extracted MOX LLOQ (0.10 µg/mL).

Table 1. Inter-assay Precision and Accuracy Results for ETH, MOX, and PZA Quality Control Samples (n = 6 replicates per batch).

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Mean (µg/mL)</th>
<th>CV [%]</th>
<th>Bias [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>ETH</td>
<td>3.75</td>
<td>9.5</td>
<td>10.0</td>
</tr>
<tr>
<td>PZA</td>
<td>3.00</td>
<td>5.1</td>
<td>0.3</td>
</tr>
<tr>
<td>MOX</td>
<td>1.00</td>
<td>3.0</td>
<td>6.4</td>
</tr>
</tbody>
</table>

Table 2. Matrix Effect for ETH, PZA, and MOX in Whole Blood on DBS Cards.

<table>
<thead>
<tr>
<th>Drug Area</th>
<th>I.S. Area</th>
<th>Area Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>ETH</td>
<td>7.6</td>
<td>17.3</td>
</tr>
<tr>
<td>PZA</td>
<td>7.6</td>
<td>17.3</td>
</tr>
<tr>
<td>MOX</td>
<td>7.6</td>
<td>17.3</td>
</tr>
</tbody>
</table>

CONCLUSION

A reliable LC-MS/MS method has been developed for the measurement of clinically relevant concentrations of Ethambutol, Pyrazinamide, and Moxifloxacin using DBS. Coupled with our earlier development of Rifampin DBS analyses, these assays support pediatric PK assessment in settings where venipuncture is not practical without concern for sample integrity.

ACKNOWLEDGEMENTS

The authors would like to acknowledge Brad Davin (Perkin Elmer) for kindly supplying the DBS cards. The authors would also like to acknowledge their partnership with Children’s Mercy Hospital and their work on the genetic analysis. Finally, they would like to thank the NIH-NICHD for funding (R21 HD069163).